You are reading an outdated edition of TRPL. For more, go here.

Loops

Rust currently provides three approaches to performing some kind of iterative activity. They are: loop, while and for. Each approach has its own set of uses.

loop

The infinite loop is the simplest form of loop available in Rust. Using the keyword loop, Rust provides a way to loop indefinitely until some terminating statement is reached. Rust's infinite loops look like this:

loop {
    println!("Loop forever!");
}

while

Rust also has a while loop. It looks like this:


# #![allow(unused_variables)]
#fn main() {
let mut x = 5; // mut x: i32
let mut done = false; // mut done: bool

while !done {
    x += x - 3;

    println!("{}", x);

    if x % 5 == 0 {
        done = true;
    }
}
#}

while loops are the correct choice when you’re not sure how many times you need to loop.

If you need an infinite loop, you may be tempted to write this:

while true {

However, loop is far better suited to handle this case:

loop {

Rust’s control-flow analysis treats this construct differently than a while true, since we know that it will always loop. In general, the more information we can give to the compiler, the better it can do with safety and code generation, so you should always prefer loop when you plan to loop infinitely.

for

The for loop is used to loop a particular number of times. Rust’s for loops work a bit differently than in other systems languages, however. Rust’s for loop doesn’t look like this “C-style” for loop:

for (x = 0; x < 10; x++) {
    printf( "%d\n", x );
}

Instead, it looks like this:


# #![allow(unused_variables)]
#fn main() {
for x in 0..10 {
    println!("{}", x); // x: i32
}
#}

In slightly more abstract terms,

for var in expression {
    code
}

The expression is an item that can be converted into an iterator using IntoIterator. The iterator gives back a series of elements, one element per iteration of the loop. That value is then bound to the name var, which is valid for the loop body. Once the body is over, the next value is fetched from the iterator, and we loop another time. When there are no more values, the for loop is over.

In our example, 0..10 is an expression that takes a start and an end position, and gives an iterator over those values. The upper bound is exclusive, though, so our loop will print 0 through 9, not 10.

Rust does not have the “C-style” for loop on purpose. Manually controlling each element of the loop is complicated and error prone, even for experienced C developers.

Enumerate

When you need to keep track of how many times you have already looped, you can use the .enumerate() function.

On ranges:


# #![allow(unused_variables)]
#fn main() {
for (index, value) in (5..10).enumerate() {
    println!("index = {} and value = {}", index, value);
}
#}

Outputs:

index = 0 and value = 5
index = 1 and value = 6
index = 2 and value = 7
index = 3 and value = 8
index = 4 and value = 9

Don't forget to add the parentheses around the range.

On iterators:


# #![allow(unused_variables)]
#fn main() {
let lines = "hello\nworld".lines();

for (linenumber, line) in lines.enumerate() {
    println!("{}: {}", linenumber, line);
}
#}

Outputs:

0: hello
1: world

Ending iteration early

Let’s take a look at that while loop we had earlier:


# #![allow(unused_variables)]
#fn main() {
let mut x = 5;
let mut done = false;

while !done {
    x += x - 3;

    println!("{}", x);

    if x % 5 == 0 {
        done = true;
    }
}
#}

We had to keep a dedicated mut boolean variable binding, done, to know when we should exit out of the loop. Rust has two keywords to help us with modifying iteration: break and continue.

In this case, we can write the loop in a better way with break:


# #![allow(unused_variables)]
#fn main() {
let mut x = 5;

loop {
    x += x - 3;

    println!("{}", x);

    if x % 5 == 0 { break; }
}
#}

We now loop forever with loop and use break to break out early. Issuing an explicit return statement will also serve to terminate the loop early.

continue is similar, but instead of ending the loop, it goes to the next iteration. This will only print the odd numbers:


# #![allow(unused_variables)]
#fn main() {
for x in 0..10 {
    if x % 2 == 0 { continue; }

    println!("{}", x);
}
#}

Loop labels

You may also encounter situations where you have nested loops and need to specify which one your break or continue statement is for. Like most other languages, Rust's break or continue apply to the innermost loop. In a situation where you would like to break or continue for one of the outer loops, you can use labels to specify which loop the break or continue statement applies to.

In the example below, we continue to the next iteration of outer loop when x is even, while we continue to the next iteration of inner loop when y is even. So it will execute the println! when both x and y are odd.


# #![allow(unused_variables)]
#fn main() {
'outer: for x in 0..10 {
    'inner: for y in 0..10 {
        if x % 2 == 0 { continue 'outer; } // Continues the loop over `x`.
        if y % 2 == 0 { continue 'inner; } // Continues the loop over `y`.
        println!("x: {}, y: {}", x, y);
    }
}
#}