Struct std::net::Ipv4Addr1.0.0[][src]

pub struct Ipv4Addr { /* fields omitted */ }

An IPv4 address.

IPv4 addresses are defined as 32-bit integers in IETF RFC 791. They are usually represented as four octets.

See IpAddr for a type encompassing both IPv4 and IPv6 addresses.

The size of an Ipv4Addr struct may vary depending on the target operating system.

Textual representation

Ipv4Addr provides a FromStr implementation. The four octets are in decimal notation, divided by . (this is called "dot-decimal notation").

Examples

use std::net::Ipv4Addr;

let localhost = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!("127.0.0.1".parse(), Ok(localhost));
assert_eq!(localhost.is_loopback(), true);Run

Methods

impl Ipv4Addr
[src]

Creates a new IPv4 address from four eight-bit octets.

The result will represent the IP address a.b.c.d.

Examples

use std::net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);Run

🔬 This is a nightly-only experimental API. (ip_constructors #44582)

requires greater scrutiny before stabilization

Creates a new IPv4 address with the address pointing to localhost: 127.0.0.1.

Examples

#![feature(ip_constructors)]
use std::net::Ipv4Addr;

let addr = Ipv4Addr::localhost();
assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));Run

🔬 This is a nightly-only experimental API. (ip_constructors #44582)

requires greater scrutiny before stabilization

Creates a new IPv4 address representing an unspecified address: 0.0.0.0

Examples

#![feature(ip_constructors)]
use std::net::Ipv4Addr;

let addr = Ipv4Addr::unspecified();
assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));Run

Returns the four eight-bit integers that make up this address.

Examples

use std::net::Ipv4Addr;

let addr = Ipv4Addr::new(127, 0, 0, 1);
assert_eq!(addr.octets(), [127, 0, 0, 1]);Run

Returns true for the special 'unspecified' address (0.0.0.0).

This property is defined in UNIX Network Programming, Second Edition, W. Richard Stevens, p. 891; see also ip7.

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);Run

Returns true if this is a loopback address (127.0.0.0/8).

This property is defined by IETF RFC 1122.

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);Run

Returns true if this is a private address.

The private address ranges are defined in IETF RFC 1918 and include:

  • 10.0.0.0/8
  • 172.16.0.0/12
  • 192.168.0.0/16

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);Run

Returns true if the address is link-local (169.254.0.0/16).

This property is defined by IETF RFC 3927.

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);Run

🔬 This is a nightly-only experimental API. (ip #27709)

extra functionality has not been scrutinized to the level that it should be to be stable

Returns true if the address appears to be globally routable. See iana-ipv4-special-registry.

The following return false:

  • private address (10.0.0.0/8, 172.16.0.0/12 and 192.168.0.0/16)
  • the loopback address (127.0.0.0/8)
  • the link-local address (169.254.0.0/16)
  • the broadcast address (255.255.255.255/32)
  • test addresses used for documentation (192.0.2.0/24, 198.51.100.0/24 and 203.0.113.0/24)
  • the unspecified address (0.0.0.0)

Examples

#![feature(ip)]

use std::net::Ipv4Addr;

fn main() {
    assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
    assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_global(), false);
    assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
}Run

Returns true if this is a multicast address (224.0.0.0/4).

Multicast addresses have a most significant octet between 224 and 239, and is defined by IETF RFC 5771.

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);Run

Returns true if this is a broadcast address (255.255.255.255).

A broadcast address has all octets set to 255 as defined in IETF RFC 919.

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);Run

Returns true if this address is in a range designated for documentation.

This is defined in IETF RFC 5737:

  • 192.0.2.0/24 (TEST-NET-1)
  • 198.51.100.0/24 (TEST-NET-2)
  • 203.0.113.0/24 (TEST-NET-3)

Examples

use std::net::Ipv4Addr;

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);Run

Converts this address to an IPv4-compatible IPv6 address.

a.b.c.d becomes ::a.b.c.d

Examples

use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 0, 49152, 767));Run

Converts this address to an IPv4-mapped IPv6 address.

a.b.c.d becomes ::ffff:a.b.c.d

Examples

use std::net::{Ipv4Addr, Ipv6Addr};

assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
           Ipv6Addr::new(0, 0, 0, 0, 0, 65535, 49152, 767));Run

Trait Implementations

impl Copy for Ipv4Addr
[src]

impl From<Ipv4Addr> for IpAddr
1.16.0
[src]

Performs the conversion.

impl Display for Ipv4Addr
[src]

Formats the value using the given formatter. Read more

impl Debug for Ipv4Addr
[src]

Formats the value using the given formatter. Read more

impl Clone for Ipv4Addr
[src]

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

impl PartialEq for Ipv4Addr
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl PartialEq<Ipv4Addr> for IpAddr
1.16.0
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl PartialEq<IpAddr> for Ipv4Addr
1.16.0
[src]

This method tests for self and other values to be equal, and is used by ==. Read more

This method tests for !=.

impl Eq for Ipv4Addr
[src]

impl Hash for Ipv4Addr
[src]

Feeds this value into the given [Hasher]. Read more

Feeds a slice of this type into the given [Hasher]. Read more

impl PartialOrd for Ipv4Addr
[src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl PartialOrd<Ipv4Addr> for IpAddr
1.16.0
[src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl PartialOrd<IpAddr> for Ipv4Addr
1.16.0
[src]

This method returns an ordering between self and other values if one exists. Read more

This method tests less than (for self and other) and is used by the < operator. Read more

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

This method tests greater than (for self and other) and is used by the > operator. Read more

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl Ord for Ipv4Addr
[src]

This method returns an Ordering between self and other. Read more

Compares and returns the maximum of two values. Read more

Compares and returns the minimum of two values. Read more

impl From<Ipv4Addr> for u32
1.1.0
[src]

Convert an Ipv4Addr into a host byte order u32.

Examples

use std::net::Ipv4Addr;

let addr = Ipv4Addr::new(13, 12, 11, 10);
assert_eq!(0x0d0c0b0au32, u32::from(addr));Run

impl From<u32> for Ipv4Addr
1.1.0
[src]

Convert a host byte order u32 into an Ipv4Addr.

Examples

use std::net::Ipv4Addr;

let addr = Ipv4Addr::from(0x0d0c0b0au32);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);Run

impl From<[u8; 4]> for Ipv4Addr
1.9.0
[src]

Examples

use std::net::Ipv4Addr;

let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);Run

impl FromStr for Ipv4Addr
[src]

The associated error which can be returned from parsing.

Parses a string s to return a value of this type. Read more

Auto Trait Implementations

impl Send for Ipv4Addr

impl Sync for Ipv4Addr