Struct std::collections::BinaryHeap 1.0.0[−][src]
pub struct BinaryHeap<T> { /* fields omitted */ }
A priority queue implemented with a binary heap.
This will be a max-heap.
It is a logic error for an item to be modified in such a way that the
item's ordering relative to any other item, as determined by the Ord
trait, changes while it is in the heap. This is normally only possible
through Cell
, RefCell
, global state, I/O, or unsafe code.
Examples
use std::collections::BinaryHeap; // Type inference lets us omit an explicit type signature (which // would be `BinaryHeap<i32>` in this example). let mut heap = BinaryHeap::new(); // We can use peek to look at the next item in the heap. In this case, // there's no items in there yet so we get None. assert_eq!(heap.peek(), None); // Let's add some scores... heap.push(1); heap.push(5); heap.push(2); // Now peek shows the most important item in the heap. assert_eq!(heap.peek(), Some(&5)); // We can check the length of a heap. assert_eq!(heap.len(), 3); // We can iterate over the items in the heap, although they are returned in // a random order. for x in &heap { println!("{}", x); } // If we instead pop these scores, they should come back in order. assert_eq!(heap.pop(), Some(5)); assert_eq!(heap.pop(), Some(2)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None); // We can clear the heap of any remaining items. heap.clear(); // The heap should now be empty. assert!(heap.is_empty())Run
Methods
impl<T> BinaryHeap<T> where
T: Ord,
[src]
impl<T> BinaryHeap<T> where
T: Ord,
pub fn new() -> BinaryHeap<T>
[src]
pub fn new() -> BinaryHeap<T>
Creates an empty BinaryHeap
as a max-heap.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.push(4);Run
pub fn with_capacity(capacity: usize) -> BinaryHeap<T>
[src]
pub fn with_capacity(capacity: usize) -> BinaryHeap<T>
Creates an empty BinaryHeap
with a specific capacity.
This preallocates enough memory for capacity
elements,
so that the BinaryHeap
does not have to be reallocated
until it contains at least that many values.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::with_capacity(10); heap.push(4);Run
ⓘImportant traits for Iter<'a, T>pub fn iter(&self) -> Iter<T>
[src]
pub fn iter(&self) -> Iter<T>
Returns an iterator visiting all values in the underlying vector, in arbitrary order.
Examples
Basic usage:
use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4]); // Print 1, 2, 3, 4 in arbitrary order for x in heap.iter() { println!("{}", x); }Run
pub fn peek(&self) -> Option<&T>
[src]
pub fn peek(&self) -> Option<&T>
Returns the greatest item in the binary heap, or None
if it is empty.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert_eq!(heap.peek(), None); heap.push(1); heap.push(5); heap.push(2); assert_eq!(heap.peek(), Some(&5)); Run
pub fn peek_mut(&mut self) -> Option<PeekMut<T>>
1.12.0[src]
pub fn peek_mut(&mut self) -> Option<PeekMut<T>>
Returns a mutable reference to the greatest item in the binary heap, or
None
if it is empty.
Note: If the PeekMut
value is leaked, the heap may be in an
inconsistent state.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert!(heap.peek_mut().is_none()); heap.push(1); heap.push(5); heap.push(2); { let mut val = heap.peek_mut().unwrap(); *val = 0; } assert_eq!(heap.peek(), Some(&2));Run
pub fn capacity(&self) -> usize
[src]
pub fn capacity(&self) -> usize
Returns the number of elements the binary heap can hold without reallocating.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.push(4);Run
pub fn reserve_exact(&mut self, additional: usize)
[src]
pub fn reserve_exact(&mut self, additional: usize)
Reserves the minimum capacity for exactly additional
more elements to be inserted in the
given BinaryHeap
. Does nothing if the capacity is already sufficient.
Note that the allocator may give the collection more space than it requests. Therefore
capacity can not be relied upon to be precisely minimal. Prefer reserve
if future
insertions are expected.
Panics
Panics if the new capacity overflows usize
.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.reserve_exact(100); assert!(heap.capacity() >= 100); heap.push(4);Run
pub fn reserve(&mut self, additional: usize)
[src]
pub fn reserve(&mut self, additional: usize)
Reserves capacity for at least additional
more elements to be inserted in the
BinaryHeap
. The collection may reserve more space to avoid frequent reallocations.
Panics
Panics if the new capacity overflows usize
.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.reserve(100); assert!(heap.capacity() >= 100); heap.push(4);Run
pub fn shrink_to_fit(&mut self)
[src]
pub fn shrink_to_fit(&mut self)
Discards as much additional capacity as possible.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.shrink_to_fit(); assert!(heap.capacity() == 0);Run
pub fn shrink_to(&mut self, min_capacity: usize)
[src]
pub fn shrink_to(&mut self, min_capacity: usize)
🔬 This is a nightly-only experimental API. (shrink_to
)
new API
Discards capacity with a lower bound.
The capacity will remain at least as large as both the length and the supplied value.
Panics if the current capacity is smaller than the supplied minimum capacity.
Examples
#![feature(shrink_to)] use std::collections::BinaryHeap; let mut heap: BinaryHeap<i32> = BinaryHeap::with_capacity(100); assert!(heap.capacity() >= 100); heap.shrink_to(10); assert!(heap.capacity() >= 10);Run
pub fn pop(&mut self) -> Option<T>
[src]
pub fn pop(&mut self) -> Option<T>
Removes the greatest item from the binary heap and returns it, or None
if it
is empty.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 3]); assert_eq!(heap.pop(), Some(3)); assert_eq!(heap.pop(), Some(1)); assert_eq!(heap.pop(), None);Run
pub fn push(&mut self, item: T)
[src]
pub fn push(&mut self, item: T)
Pushes an item onto the binary heap.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); heap.push(3); heap.push(5); heap.push(1); assert_eq!(heap.len(), 3); assert_eq!(heap.peek(), Some(&5));Run
pub fn into_vec(self) -> Vec<T>
1.5.0[src]
pub fn into_vec(self) -> Vec<T>
Consumes the BinaryHeap
and returns the underlying vector
in arbitrary order.
Examples
Basic usage:
use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4, 5, 6, 7]); let vec = heap.into_vec(); // Will print in some order for x in vec { println!("{}", x); }Run
pub fn into_sorted_vec(self) -> Vec<T>
1.5.0[src]
pub fn into_sorted_vec(self) -> Vec<T>
Consumes the BinaryHeap
and returns a vector in sorted
(ascending) order.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 2, 4, 5, 7]); heap.push(6); heap.push(3); let vec = heap.into_sorted_vec(); assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]);Run
pub fn len(&self) -> usize
[src]
pub fn len(&self) -> usize
Returns the length of the binary heap.
Examples
Basic usage:
use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 3]); assert_eq!(heap.len(), 2);Run
pub fn is_empty(&self) -> bool
[src]
pub fn is_empty(&self) -> bool
Checks if the binary heap is empty.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::new(); assert!(heap.is_empty()); heap.push(3); heap.push(5); heap.push(1); assert!(!heap.is_empty());Run
ⓘImportant traits for Drain<'a, T>pub fn drain(&mut self) -> Drain<T>
1.6.0[src]
pub fn drain(&mut self) -> Drain<T>
Clears the binary heap, returning an iterator over the removed elements.
The elements are removed in arbitrary order.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 3]); assert!(!heap.is_empty()); for x in heap.drain() { println!("{}", x); } assert!(heap.is_empty());Run
pub fn clear(&mut self)
[src]
pub fn clear(&mut self)
Drops all items from the binary heap.
Examples
Basic usage:
use std::collections::BinaryHeap; let mut heap = BinaryHeap::from(vec![1, 3]); assert!(!heap.is_empty()); heap.clear(); assert!(heap.is_empty());Run
pub fn append(&mut self, other: &mut BinaryHeap<T>)
1.11.0[src]
pub fn append(&mut self, other: &mut BinaryHeap<T>)
Moves all the elements of other
into self
, leaving other
empty.
Examples
Basic usage:
use std::collections::BinaryHeap; let v = vec![-10, 1, 2, 3, 3]; let mut a = BinaryHeap::from(v); let v = vec![-20, 5, 43]; let mut b = BinaryHeap::from(v); a.append(&mut b); assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); assert!(b.is_empty());Run
Trait Implementations
impl<T> FromIterator<T> for BinaryHeap<T> where
T: Ord,
[src]
impl<T> FromIterator<T> for BinaryHeap<T> where
T: Ord,
fn from_iter<I>(iter: I) -> BinaryHeap<T> where
I: IntoIterator<Item = T>,
[src]
fn from_iter<I>(iter: I) -> BinaryHeap<T> where
I: IntoIterator<Item = T>,
Creates a value from an iterator. Read more
impl<T> Clone for BinaryHeap<T> where
T: Clone,
[src]
impl<T> Clone for BinaryHeap<T> where
T: Clone,
fn clone(&self) -> BinaryHeap<T>
[src]
fn clone(&self) -> BinaryHeap<T>
Returns a copy of the value. Read more
fn clone_from(&mut self, source: &BinaryHeap<T>)
[src]
fn clone_from(&mut self, source: &BinaryHeap<T>)
Performs copy-assignment from source
. Read more
impl<T> Debug for BinaryHeap<T> where
T: Ord + Debug,
1.4.0[src]
impl<T> Debug for BinaryHeap<T> where
T: Ord + Debug,
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
[src]
fn fmt(&self, f: &mut Formatter) -> Result<(), Error>
Formats the value using the given formatter. Read more
impl<T> IntoIterator for BinaryHeap<T> where
T: Ord,
[src]
impl<T> IntoIterator for BinaryHeap<T> where
T: Ord,
type Item = T
The type of the elements being iterated over.
type IntoIter = IntoIter<T>
Which kind of iterator are we turning this into?
ⓘImportant traits for IntoIter<T>fn into_iter(self) -> IntoIter<T>
[src]
fn into_iter(self) -> IntoIter<T>
Creates a consuming iterator, that is, one that moves each value out of the binary heap in arbitrary order. The binary heap cannot be used after calling this.
Examples
Basic usage:
use std::collections::BinaryHeap; let heap = BinaryHeap::from(vec![1, 2, 3, 4]); // Print 1, 2, 3, 4 in arbitrary order for x in heap.into_iter() { // x has type i32, not &i32 println!("{}", x); }Run
impl<'a, T> IntoIterator for &'a BinaryHeap<T> where
T: Ord,
[src]
impl<'a, T> IntoIterator for &'a BinaryHeap<T> where
T: Ord,
type Item = &'a T
The type of the elements being iterated over.
type IntoIter = Iter<'a, T>
Which kind of iterator are we turning this into?
ⓘImportant traits for Iter<'a, T>fn into_iter(self) -> Iter<'a, T>
[src]
fn into_iter(self) -> Iter<'a, T>
Creates an iterator from a value. Read more
impl<T> Extend<T> for BinaryHeap<T> where
T: Ord,
[src]
impl<T> Extend<T> for BinaryHeap<T> where
T: Ord,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>,
[src]
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = T>,
Extends a collection with the contents of an iterator. Read more
impl<'a, T> Extend<&'a T> for BinaryHeap<T> where
T: 'a + Copy + Ord,
1.2.0[src]
impl<'a, T> Extend<&'a T> for BinaryHeap<T> where
T: 'a + Copy + Ord,
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
[src]
fn extend<I>(&mut self, iter: I) where
I: IntoIterator<Item = &'a T>,
Extends a collection with the contents of an iterator. Read more
impl<T> Default for BinaryHeap<T> where
T: Ord,
[src]
impl<T> Default for BinaryHeap<T> where
T: Ord,
fn default() -> BinaryHeap<T>
[src]
fn default() -> BinaryHeap<T>
Creates an empty BinaryHeap<T>
.
impl<T> From<BinaryHeap<T>> for Vec<T>
1.5.0[src]
impl<T> From<BinaryHeap<T>> for Vec<T>
impl<T> From<Vec<T>> for BinaryHeap<T> where
T: Ord,
1.5.0[src]
impl<T> From<Vec<T>> for BinaryHeap<T> where
T: Ord,
fn from(vec: Vec<T>) -> BinaryHeap<T>
[src]
fn from(vec: Vec<T>) -> BinaryHeap<T>
Performs the conversion.
Auto Trait Implementations
impl<T> Send for BinaryHeap<T> where
T: Send,
impl<T> Send for BinaryHeap<T> where
T: Send,
impl<T> Sync for BinaryHeap<T> where
T: Sync,
impl<T> Sync for BinaryHeap<T> where
T: Sync,