1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. //! This module provides constants which are specific to the implementation //! of the `f64` floating point data type. //! //! *[See also the `f64` primitive type](../../std/primitive.f64.html).* //! //! Mathematically significant numbers are provided in the `consts` sub-module. #![stable(feature = "rust1", since = "1.0.0")] use mem; use num::Float; use num::FpCategory; use num::FpCategory as Fp; /// The radix or base of the internal representation of `f64`. #[stable(feature = "rust1", since = "1.0.0")] pub const RADIX: u32 = 2; /// Number of significant digits in base 2. #[stable(feature = "rust1", since = "1.0.0")] pub const MANTISSA_DIGITS: u32 = 53; /// Approximate number of significant digits in base 10. #[stable(feature = "rust1", since = "1.0.0")] pub const DIGITS: u32 = 15; /// Difference between `1.0` and the next largest representable number. #[stable(feature = "rust1", since = "1.0.0")] pub const EPSILON: f64 = 2.2204460492503131e-16_f64; /// Smallest finite `f64` value. #[stable(feature = "rust1", since = "1.0.0")] pub const MIN: f64 = -1.7976931348623157e+308_f64; /// Smallest positive normal `f64` value. #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_POSITIVE: f64 = 2.2250738585072014e-308_f64; /// Largest finite `f64` value. #[stable(feature = "rust1", since = "1.0.0")] pub const MAX: f64 = 1.7976931348623157e+308_f64; /// One greater than the minimum possible normal power of 2 exponent. #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_EXP: i32 = -1021; /// Maximum possible power of 2 exponent. #[stable(feature = "rust1", since = "1.0.0")] pub const MAX_EXP: i32 = 1024; /// Minimum possible normal power of 10 exponent. #[stable(feature = "rust1", since = "1.0.0")] pub const MIN_10_EXP: i32 = -307; /// Maximum possible power of 10 exponent. #[stable(feature = "rust1", since = "1.0.0")] pub const MAX_10_EXP: i32 = 308; /// Not a Number (NaN). #[stable(feature = "rust1", since = "1.0.0")] pub const NAN: f64 = 0.0_f64 / 0.0_f64; /// Infinity (∞). #[stable(feature = "rust1", since = "1.0.0")] pub const INFINITY: f64 = 1.0_f64 / 0.0_f64; /// Negative infinity (-∞). #[stable(feature = "rust1", since = "1.0.0")] pub const NEG_INFINITY: f64 = -1.0_f64 / 0.0_f64; /// Basic mathematical constants. #[stable(feature = "rust1", since = "1.0.0")] pub mod consts { // FIXME: replace with mathematical constants from cmath. /// Archimedes' constant (π) #[stable(feature = "rust1", since = "1.0.0")] pub const PI: f64 = 3.14159265358979323846264338327950288_f64; /// π/2 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_2: f64 = 1.57079632679489661923132169163975144_f64; /// π/3 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_3: f64 = 1.04719755119659774615421446109316763_f64; /// π/4 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_4: f64 = 0.785398163397448309615660845819875721_f64; /// π/6 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_6: f64 = 0.52359877559829887307710723054658381_f64; /// π/8 #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_PI_8: f64 = 0.39269908169872415480783042290993786_f64; /// 1/π #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_1_PI: f64 = 0.318309886183790671537767526745028724_f64; /// 2/π #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_2_PI: f64 = 0.636619772367581343075535053490057448_f64; /// 2/sqrt(π) #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_2_SQRT_PI: f64 = 1.12837916709551257389615890312154517_f64; /// sqrt(2) #[stable(feature = "rust1", since = "1.0.0")] pub const SQRT_2: f64 = 1.41421356237309504880168872420969808_f64; /// 1/sqrt(2) #[stable(feature = "rust1", since = "1.0.0")] pub const FRAC_1_SQRT_2: f64 = 0.707106781186547524400844362104849039_f64; /// Euler's number (e) #[stable(feature = "rust1", since = "1.0.0")] pub const E: f64 = 2.71828182845904523536028747135266250_f64; /// log<sub>2</sub>(10) #[unstable(feature = "extra_log_consts", issue = "50540")] pub const LOG2_10: f64 = 3.32192809488736234787031942948939018_f64; /// log<sub>2</sub>(e) #[stable(feature = "rust1", since = "1.0.0")] pub const LOG2_E: f64 = 1.44269504088896340735992468100189214_f64; /// log<sub>10</sub>(2) #[unstable(feature = "extra_log_consts", issue = "50540")] pub const LOG10_2: f64 = 0.301029995663981195213738894724493027_f64; /// log<sub>10</sub>(e) #[stable(feature = "rust1", since = "1.0.0")] pub const LOG10_E: f64 = 0.434294481903251827651128918916605082_f64; /// ln(2) #[stable(feature = "rust1", since = "1.0.0")] pub const LN_2: f64 = 0.693147180559945309417232121458176568_f64; /// ln(10) #[stable(feature = "rust1", since = "1.0.0")] pub const LN_10: f64 = 2.30258509299404568401799145468436421_f64; } #[unstable(feature = "core_float", reason = "stable interface is via `impl f{32,64}` in later crates", issue = "32110")] impl Float for f64 { type Bits = u64; /// Returns `true` if the number is NaN. #[inline] fn is_nan(self) -> bool { self != self } /// Returns `true` if the number is infinite. #[inline] fn is_infinite(self) -> bool { self == INFINITY || self == NEG_INFINITY } /// Returns `true` if the number is neither infinite or NaN. #[inline] fn is_finite(self) -> bool { !(self.is_nan() || self.is_infinite()) } /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. #[inline] fn is_normal(self) -> bool { self.classify() == Fp::Normal } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. fn classify(self) -> Fp { const EXP_MASK: u64 = 0x7ff0000000000000; const MAN_MASK: u64 = 0x000fffffffffffff; let bits = self.to_bits(); match (bits & MAN_MASK, bits & EXP_MASK) { (0, 0) => Fp::Zero, (_, 0) => Fp::Subnormal, (0, EXP_MASK) => Fp::Infinite, (_, EXP_MASK) => Fp::Nan, _ => Fp::Normal, } } /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with /// positive sign bit and positive infinity. #[inline] fn is_sign_positive(self) -> bool { !self.is_sign_negative() } /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with /// negative sign bit and negative infinity. #[inline] fn is_sign_negative(self) -> bool { self.to_bits() & 0x8000_0000_0000_0000 != 0 } /// Returns the reciprocal (multiplicative inverse) of the number. #[inline] fn recip(self) -> f64 { 1.0 / self } /// Converts to degrees, assuming the number is in radians. #[inline] fn to_degrees(self) -> f64 { // The division here is correctly rounded with respect to the true // value of 180/π. (This differs from f32, where a constant must be // used to ensure a correctly rounded result.) self * (180.0f64 / consts::PI) } /// Converts to radians, assuming the number is in degrees. #[inline] fn to_radians(self) -> f64 { let value: f64 = consts::PI; self * (value / 180.0) } /// Returns the maximum of the two numbers. #[inline] fn max(self, other: f64) -> f64 { // IEEE754 says: maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it // is either x or y, canonicalized (this means results might differ among implementations). // When either x or y is a signalingNaN, then the result is according to 6.2. // // Since we do not support sNaN in Rust yet, we do not need to handle them. // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by // multiplying by 1.0. Should switch to the `canonicalize` when it works. (if self.is_nan() || self < other { other } else { self }) * 1.0 } /// Returns the minimum of the two numbers. #[inline] fn min(self, other: f64) -> f64 { // IEEE754 says: minNum(x, y) is the canonicalized number x if x < y, y if y < x, the // canonicalized number if one operand is a number and the other a quiet NaN. Otherwise it // is either x or y, canonicalized (this means results might differ among implementations). // When either x or y is a signalingNaN, then the result is according to 6.2. // // Since we do not support sNaN in Rust yet, we do not need to handle them. // FIXME(nagisa): due to https://bugs.llvm.org/show_bug.cgi?id=33303 we canonicalize by // multiplying by 1.0. Should switch to the `canonicalize` when it works. (if other.is_nan() || self < other { self } else { other }) * 1.0 } /// Raw transmutation to `u64`. #[inline] fn to_bits(self) -> u64 { unsafe { mem::transmute(self) } } /// Raw transmutation from `u64`. #[inline] fn from_bits(v: u64) -> Self { // It turns out the safety issues with sNaN were overblown! Hooray! unsafe { mem::transmute(v) } } } // FIXME: remove (inline) this macro and the Float trait // when updating to a bootstrap compiler that has the new lang items. #[unstable(feature = "core_float", issue = "32110")] macro_rules! f64_core_methods { () => { /// Returns `true` if this value is `NaN` and false otherwise. /// /// ``` /// use std::f64; /// /// let nan = f64::NAN; /// let f = 7.0_f64; /// /// assert!(nan.is_nan()); /// assert!(!f.is_nan()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_nan(self) -> bool { Float::is_nan(self) } /// Returns `true` if this value is positive infinity or negative infinity and /// false otherwise. /// /// ``` /// use std::f64; /// /// let f = 7.0f64; /// let inf = f64::INFINITY; /// let neg_inf = f64::NEG_INFINITY; /// let nan = f64::NAN; /// /// assert!(!f.is_infinite()); /// assert!(!nan.is_infinite()); /// /// assert!(inf.is_infinite()); /// assert!(neg_inf.is_infinite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_infinite(self) -> bool { Float::is_infinite(self) } /// Returns `true` if this number is neither infinite nor `NaN`. /// /// ``` /// use std::f64; /// /// let f = 7.0f64; /// let inf: f64 = f64::INFINITY; /// let neg_inf: f64 = f64::NEG_INFINITY; /// let nan: f64 = f64::NAN; /// /// assert!(f.is_finite()); /// /// assert!(!nan.is_finite()); /// assert!(!inf.is_finite()); /// assert!(!neg_inf.is_finite()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_finite(self) -> bool { Float::is_finite(self) } /// Returns `true` if the number is neither zero, infinite, /// [subnormal][subnormal], or `NaN`. /// /// ``` /// use std::f64; /// /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308f64 /// let max = f64::MAX; /// let lower_than_min = 1.0e-308_f64; /// let zero = 0.0f64; /// /// assert!(min.is_normal()); /// assert!(max.is_normal()); /// /// assert!(!zero.is_normal()); /// assert!(!f64::NAN.is_normal()); /// assert!(!f64::INFINITY.is_normal()); /// // Values between `0` and `min` are Subnormal. /// assert!(!lower_than_min.is_normal()); /// ``` /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_normal(self) -> bool { Float::is_normal(self) } /// Returns the floating point category of the number. If only one property /// is going to be tested, it is generally faster to use the specific /// predicate instead. /// /// ``` /// use std::num::FpCategory; /// use std::f64; /// /// let num = 12.4_f64; /// let inf = f64::INFINITY; /// /// assert_eq!(num.classify(), FpCategory::Normal); /// assert_eq!(inf.classify(), FpCategory::Infinite); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn classify(self) -> FpCategory { Float::classify(self) } /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaN`s with /// positive sign bit and positive infinity. /// /// ``` /// let f = 7.0_f64; /// let g = -7.0_f64; /// /// assert!(f.is_sign_positive()); /// assert!(!g.is_sign_positive()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_sign_positive(self) -> bool { Float::is_sign_positive(self) } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_positive")] #[inline] #[doc(hidden)] pub fn is_positive(self) -> bool { Float::is_sign_positive(self) } /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaN`s with /// negative sign bit and negative infinity. /// /// ``` /// let f = 7.0_f64; /// let g = -7.0_f64; /// /// assert!(!f.is_sign_negative()); /// assert!(g.is_sign_negative()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is_sign_negative(self) -> bool { Float::is_sign_negative(self) } #[stable(feature = "rust1", since = "1.0.0")] #[rustc_deprecated(since = "1.0.0", reason = "renamed to is_sign_negative")] #[inline] #[doc(hidden)] pub fn is_negative(self) -> bool { Float::is_sign_negative(self) } /// Takes the reciprocal (inverse) of a number, `1/x`. /// /// ``` /// let x = 2.0_f64; /// let abs_difference = (x.recip() - (1.0/x)).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn recip(self) -> f64 { Float::recip(self) } /// Converts radians to degrees. /// /// ``` /// use std::f64::consts; /// /// let angle = consts::PI; /// /// let abs_difference = (angle.to_degrees() - 180.0).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_degrees(self) -> f64 { Float::to_degrees(self) } /// Converts degrees to radians. /// /// ``` /// use std::f64::consts; /// /// let angle = 180.0_f64; /// /// let abs_difference = (angle.to_radians() - consts::PI).abs(); /// /// assert!(abs_difference < 1e-10); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_radians(self) -> f64 { Float::to_radians(self) } /// Returns the maximum of the two numbers. /// /// ``` /// let x = 1.0_f64; /// let y = 2.0_f64; /// /// assert_eq!(x.max(y), y); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn max(self, other: f64) -> f64 { Float::max(self, other) } /// Returns the minimum of the two numbers. /// /// ``` /// let x = 1.0_f64; /// let y = 2.0_f64; /// /// assert_eq!(x.min(y), x); /// ``` /// /// If one of the arguments is NaN, then the other argument is returned. #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn min(self, other: f64) -> f64 { Float::min(self, other) } /// Raw transmutation to `u64`. /// /// This is currently identical to `transmute::<f64, u64>(self)` on all platforms. /// /// See `from_bits` for some discussion of the portability of this operation /// (there are almost no issues). /// /// Note that this function is distinct from `as` casting, which attempts to /// preserve the *numeric* value, and not the bitwise value. /// /// # Examples /// /// ``` /// assert!((1f64).to_bits() != 1f64 as u64); // to_bits() is not casting! /// assert_eq!((12.5f64).to_bits(), 0x4029000000000000); /// /// ``` #[stable(feature = "float_bits_conv", since = "1.20.0")] #[inline] pub fn to_bits(self) -> u64 { Float::to_bits(self) } /// Raw transmutation from `u64`. /// /// This is currently identical to `transmute::<u64, f64>(v)` on all platforms. /// It turns out this is incredibly portable, for two reasons: /// /// * Floats and Ints have the same endianness on all supported platforms. /// * IEEE-754 very precisely specifies the bit layout of floats. /// /// However there is one caveat: prior to the 2008 version of IEEE-754, how /// to interpret the NaN signaling bit wasn't actually specified. Most platforms /// (notably x86 and ARM) picked the interpretation that was ultimately /// standardized in 2008, but some didn't (notably MIPS). As a result, all /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa. /// /// Rather than trying to preserve signaling-ness cross-platform, this /// implementation favours preserving the exact bits. This means that /// any payloads encoded in NaNs will be preserved even if the result of /// this method is sent over the network from an x86 machine to a MIPS one. /// /// If the results of this method are only manipulated by the same /// architecture that produced them, then there is no portability concern. /// /// If the input isn't NaN, then there is no portability concern. /// /// If you don't care about signalingness (very likely), then there is no /// portability concern. /// /// Note that this function is distinct from `as` casting, which attempts to /// preserve the *numeric* value, and not the bitwise value. /// /// # Examples /// /// ``` /// use std::f64; /// let v = f64::from_bits(0x4029000000000000); /// let difference = (v - 12.5).abs(); /// assert!(difference <= 1e-5); /// ``` #[stable(feature = "float_bits_conv", since = "1.20.0")] #[inline] pub fn from_bits(v: u64) -> Self { Float::from_bits(v) } }} #[lang = "f64"] #[cfg(not(test))] impl f64 { f64_core_methods!(); }