1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
// Copyright 2013-2016 The Rust Project Developers. See the COPYRIGHT // file at the top-level directory of this distribution and at // http://rust-lang.org/COPYRIGHT. // // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your // option. This file may not be copied, modified, or distributed // except according to those terms. use ops::{Mul, Add, Try}; use num::Wrapping; use super::{AlwaysOk, LoopState}; /// Conversion from an `Iterator`. /// /// By implementing `FromIterator` for a type, you define how it will be /// created from an iterator. This is common for types which describe a /// collection of some kind. /// /// `FromIterator`'s [`from_iter`] is rarely called explicitly, and is instead /// used through [`Iterator`]'s [`collect`] method. See [`collect`]'s /// documentation for more examples. /// /// [`from_iter`]: #tymethod.from_iter /// [`Iterator`]: trait.Iterator.html /// [`collect`]: trait.Iterator.html#method.collect /// /// See also: [`IntoIterator`]. /// /// [`IntoIterator`]: trait.IntoIterator.html /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::iter::FromIterator; /// /// let five_fives = std::iter::repeat(5).take(5); /// /// let v = Vec::from_iter(five_fives); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` /// /// Using [`collect`] to implicitly use `FromIterator`: /// /// ``` /// let five_fives = std::iter::repeat(5).take(5); /// /// let v: Vec<i32> = five_fives.collect(); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` /// /// Implementing `FromIterator` for your type: /// /// ``` /// use std::iter::FromIterator; /// /// // A sample collection, that's just a wrapper over Vec<T> /// #[derive(Debug)] /// struct MyCollection(Vec<i32>); /// /// // Let's give it some methods so we can create one and add things /// // to it. /// impl MyCollection { /// fn new() -> MyCollection { /// MyCollection(Vec::new()) /// } /// /// fn add(&mut self, elem: i32) { /// self.0.push(elem); /// } /// } /// /// // and we'll implement FromIterator /// impl FromIterator<i32> for MyCollection { /// fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self { /// let mut c = MyCollection::new(); /// /// for i in iter { /// c.add(i); /// } /// /// c /// } /// } /// /// // Now we can make a new iterator... /// let iter = (0..5).into_iter(); /// /// // ... and make a MyCollection out of it /// let c = MyCollection::from_iter(iter); /// /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); /// /// // collect works too! /// /// let iter = (0..5).into_iter(); /// let c: MyCollection = iter.collect(); /// /// assert_eq!(c.0, vec![0, 1, 2, 3, 4]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_on_unimplemented="a collection of type `{Self}` cannot be \ built from an iterator over elements of type `{A}`"] pub trait FromIterator<A>: Sized { /// Creates a value from an iterator. /// /// See the [module-level documentation] for more. /// /// [module-level documentation]: index.html /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::iter::FromIterator; /// /// let five_fives = std::iter::repeat(5).take(5); /// /// let v = Vec::from_iter(five_fives); /// /// assert_eq!(v, vec![5, 5, 5, 5, 5]); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn from_iter<T: IntoIterator<Item=A>>(iter: T) -> Self; } /// Conversion into an `Iterator`. /// /// By implementing `IntoIterator` for a type, you define how it will be /// converted to an iterator. This is common for types which describe a /// collection of some kind. /// /// One benefit of implementing `IntoIterator` is that your type will [work /// with Rust's `for` loop syntax](index.html#for-loops-and-intoiterator). /// /// See also: [`FromIterator`]. /// /// [`FromIterator`]: trait.FromIterator.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let v = vec![1, 2, 3]; /// let mut iter = v.into_iter(); /// /// assert_eq!(Some(1), iter.next()); /// assert_eq!(Some(2), iter.next()); /// assert_eq!(Some(3), iter.next()); /// assert_eq!(None, iter.next()); /// ``` /// Implementing `IntoIterator` for your type: /// /// ``` /// // A sample collection, that's just a wrapper over Vec<T> /// #[derive(Debug)] /// struct MyCollection(Vec<i32>); /// /// // Let's give it some methods so we can create one and add things /// // to it. /// impl MyCollection { /// fn new() -> MyCollection { /// MyCollection(Vec::new()) /// } /// /// fn add(&mut self, elem: i32) { /// self.0.push(elem); /// } /// } /// /// // and we'll implement IntoIterator /// impl IntoIterator for MyCollection { /// type Item = i32; /// type IntoIter = ::std::vec::IntoIter<i32>; /// /// fn into_iter(self) -> Self::IntoIter { /// self.0.into_iter() /// } /// } /// /// // Now we can make a new collection... /// let mut c = MyCollection::new(); /// /// // ... add some stuff to it ... /// c.add(0); /// c.add(1); /// c.add(2); /// /// // ... and then turn it into an Iterator: /// for (i, n) in c.into_iter().enumerate() { /// assert_eq!(i as i32, n); /// } /// ``` /// /// It is common to use `IntoIterator` as a trait bound. This allows /// the input collection type to change, so long as it is still an /// iterator. Additional bounds can be specified by restricting on /// `Item`: /// /// ```rust /// fn collect_as_strings<T>(collection: T) -> Vec<String> /// where T: IntoIterator, /// T::Item : std::fmt::Debug, /// { /// collection /// .into_iter() /// .map(|item| format!("{:?}", item)) /// .collect() /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub trait IntoIterator { /// The type of the elements being iterated over. #[stable(feature = "rust1", since = "1.0.0")] type Item; /// Which kind of iterator are we turning this into? #[stable(feature = "rust1", since = "1.0.0")] type IntoIter: Iterator<Item=Self::Item>; /// Creates an iterator from a value. /// /// See the [module-level documentation] for more. /// /// [module-level documentation]: index.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let v = vec![1, 2, 3]; /// let mut iter = v.into_iter(); /// /// assert_eq!(Some(1), iter.next()); /// assert_eq!(Some(2), iter.next()); /// assert_eq!(Some(3), iter.next()); /// assert_eq!(None, iter.next()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn into_iter(self) -> Self::IntoIter; } #[stable(feature = "rust1", since = "1.0.0")] impl<I: Iterator> IntoIterator for I { type Item = I::Item; type IntoIter = I; fn into_iter(self) -> I { self } } /// Extend a collection with the contents of an iterator. /// /// Iterators produce a series of values, and collections can also be thought /// of as a series of values. The `Extend` trait bridges this gap, allowing you /// to extend a collection by including the contents of that iterator. When /// extending a collection with an already existing key, that entry is updated /// or, in the case of collections that permit multiple entries with equal /// keys, that entry is inserted. /// /// # Examples /// /// Basic usage: /// /// ``` /// // You can extend a String with some chars: /// let mut message = String::from("The first three letters are: "); /// /// message.extend(&['a', 'b', 'c']); /// /// assert_eq!("abc", &message[29..32]); /// ``` /// /// Implementing `Extend`: /// /// ``` /// // A sample collection, that's just a wrapper over Vec<T> /// #[derive(Debug)] /// struct MyCollection(Vec<i32>); /// /// // Let's give it some methods so we can create one and add things /// // to it. /// impl MyCollection { /// fn new() -> MyCollection { /// MyCollection(Vec::new()) /// } /// /// fn add(&mut self, elem: i32) { /// self.0.push(elem); /// } /// } /// /// // since MyCollection has a list of i32s, we implement Extend for i32 /// impl Extend<i32> for MyCollection { /// /// // This is a bit simpler with the concrete type signature: we can call /// // extend on anything which can be turned into an Iterator which gives /// // us i32s. Because we need i32s to put into MyCollection. /// fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) { /// /// // The implementation is very straightforward: loop through the /// // iterator, and add() each element to ourselves. /// for elem in iter { /// self.add(elem); /// } /// } /// } /// /// let mut c = MyCollection::new(); /// /// c.add(5); /// c.add(6); /// c.add(7); /// /// // let's extend our collection with three more numbers /// c.extend(vec![1, 2, 3]); /// /// // we've added these elements onto the end /// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{:?}", c)); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub trait Extend<A> { /// Extends a collection with the contents of an iterator. /// /// As this is the only method for this trait, the [trait-level] docs /// contain more details. /// /// [trait-level]: trait.Extend.html /// /// # Examples /// /// Basic usage: /// /// ``` /// // You can extend a String with some chars: /// let mut message = String::from("abc"); /// /// message.extend(['d', 'e', 'f'].iter()); /// /// assert_eq!("abcdef", &message); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn extend<T: IntoIterator<Item=A>>(&mut self, iter: T); } #[stable(feature = "extend_for_unit", since = "1.28.0")] impl Extend<()> for () { fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) { iter.into_iter().for_each(drop) } } /// An iterator able to yield elements from both ends. /// /// Something that implements `DoubleEndedIterator` has one extra capability /// over something that implements [`Iterator`]: the ability to also take /// `Item`s from the back, as well as the front. /// /// It is important to note that both back and forth work on the same range, /// and do not cross: iteration is over when they meet in the middle. /// /// In a similar fashion to the [`Iterator`] protocol, once a /// `DoubleEndedIterator` returns `None` from a `next_back()`, calling it again /// may or may not ever return `Some` again. `next()` and `next_back()` are /// interchangeable for this purpose. /// /// [`Iterator`]: trait.Iterator.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let numbers = vec![1, 2, 3, 4, 5, 6]; /// /// let mut iter = numbers.iter(); /// /// assert_eq!(Some(&1), iter.next()); /// assert_eq!(Some(&6), iter.next_back()); /// assert_eq!(Some(&5), iter.next_back()); /// assert_eq!(Some(&2), iter.next()); /// assert_eq!(Some(&3), iter.next()); /// assert_eq!(Some(&4), iter.next()); /// assert_eq!(None, iter.next()); /// assert_eq!(None, iter.next_back()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub trait DoubleEndedIterator: Iterator { /// Removes and returns an element from the end of the iterator. /// /// Returns `None` when there are no more elements. /// /// The [trait-level] docs contain more details. /// /// [trait-level]: trait.DoubleEndedIterator.html /// /// # Examples /// /// Basic usage: /// /// ``` /// let numbers = vec![1, 2, 3, 4, 5, 6]; /// /// let mut iter = numbers.iter(); /// /// assert_eq!(Some(&1), iter.next()); /// assert_eq!(Some(&6), iter.next_back()); /// assert_eq!(Some(&5), iter.next_back()); /// assert_eq!(Some(&2), iter.next()); /// assert_eq!(Some(&3), iter.next()); /// assert_eq!(Some(&4), iter.next()); /// assert_eq!(None, iter.next()); /// assert_eq!(None, iter.next_back()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] fn next_back(&mut self) -> Option<Self::Item>; /// This is the reverse version of [`try_fold()`]: it takes elements /// starting from the back of the iterator. /// /// [`try_fold()`]: trait.Iterator.html#method.try_fold /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = ["1", "2", "3"]; /// let sum = a.iter() /// .map(|&s| s.parse::<i32>()) /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); /// assert_eq!(sum, Ok(6)); /// ``` /// /// Short-circuiting: /// /// ``` /// let a = ["1", "rust", "3"]; /// let mut it = a.iter(); /// let sum = it /// .by_ref() /// .map(|&s| s.parse::<i32>()) /// .try_rfold(0, |acc, x| x.and_then(|y| Ok(acc + y))); /// assert!(sum.is_err()); /// /// // Because it short-circuited, the remaining elements are still /// // available through the iterator. /// assert_eq!(it.next_back(), Some(&"1")); /// ``` #[inline] #[stable(feature = "iterator_try_fold", since = "1.27.0")] fn try_rfold<B, F, R>(&mut self, init: B, mut f: F) -> R where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Ok=B> { let mut accum = init; while let Some(x) = self.next_back() { accum = f(accum, x)?; } Try::from_ok(accum) } /// An iterator method that reduces the iterator's elements to a single, /// final value, starting from the back. /// /// This is the reverse version of [`fold()`]: it takes elements starting from /// the back of the iterator. /// /// `rfold()` takes two arguments: an initial value, and a closure with two /// arguments: an 'accumulator', and an element. The closure returns the value that /// the accumulator should have for the next iteration. /// /// The initial value is the value the accumulator will have on the first /// call. /// /// After applying this closure to every element of the iterator, `rfold()` /// returns the accumulator. /// /// This operation is sometimes called 'reduce' or 'inject'. /// /// Folding is useful whenever you have a collection of something, and want /// to produce a single value from it. /// /// [`fold()`]: trait.Iterator.html#method.fold /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// // the sum of all of the elements of a /// let sum = a.iter() /// .rfold(0, |acc, &x| acc + x); /// /// assert_eq!(sum, 6); /// ``` /// /// This example builds a string, starting with an initial value /// and continuing with each element from the back until the front: /// /// ``` /// let numbers = [1, 2, 3, 4, 5]; /// /// let zero = "0".to_string(); /// /// let result = numbers.iter().rfold(zero, |acc, &x| { /// format!("({} + {})", x, acc) /// }); /// /// assert_eq!(result, "(1 + (2 + (3 + (4 + (5 + 0)))))"); /// ``` #[inline] #[stable(feature = "iter_rfold", since = "1.27.0")] fn rfold<B, F>(mut self, accum: B, mut f: F) -> B where Self: Sized, F: FnMut(B, Self::Item) -> B, { self.try_rfold(accum, move |acc, x| AlwaysOk(f(acc, x))).0 } /// Searches for an element of an iterator from the back that satisfies a predicate. /// /// `rfind()` takes a closure that returns `true` or `false`. It applies /// this closure to each element of the iterator, starting at the end, and if any /// of them return `true`, then `rfind()` returns [`Some(element)`]. If they all return /// `false`, it returns [`None`]. /// /// `rfind()` is short-circuiting; in other words, it will stop processing /// as soon as the closure returns `true`. /// /// Because `rfind()` takes a reference, and many iterators iterate over /// references, this leads to a possibly confusing situation where the /// argument is a double reference. You can see this effect in the /// examples below, with `&&x`. /// /// [`Some(element)`]: ../../std/option/enum.Option.html#variant.Some /// [`None`]: ../../std/option/enum.Option.html#variant.None /// /// # Examples /// /// Basic usage: /// /// ``` /// let a = [1, 2, 3]; /// /// assert_eq!(a.iter().rfind(|&&x| x == 2), Some(&2)); /// /// assert_eq!(a.iter().rfind(|&&x| x == 5), None); /// ``` /// /// Stopping at the first `true`: /// /// ``` /// let a = [1, 2, 3]; /// /// let mut iter = a.iter(); /// /// assert_eq!(iter.rfind(|&&x| x == 2), Some(&2)); /// /// // we can still use `iter`, as there are more elements. /// assert_eq!(iter.next_back(), Some(&1)); /// ``` #[inline] #[stable(feature = "iter_rfind", since = "1.27.0")] fn rfind<P>(&mut self, mut predicate: P) -> Option<Self::Item> where Self: Sized, P: FnMut(&Self::Item) -> bool { self.try_rfold((), move |(), x| { if predicate(&x) { LoopState::Break(x) } else { LoopState::Continue(()) } }).break_value() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I { fn next_back(&mut self) -> Option<I::Item> { (**self).next_back() } } /// An iterator that knows its exact length. /// /// Many [`Iterator`]s don't know how many times they will iterate, but some do. /// If an iterator knows how many times it can iterate, providing access to /// that information can be useful. For example, if you want to iterate /// backwards, a good start is to know where the end is. /// /// When implementing an `ExactSizeIterator`, you must also implement /// [`Iterator`]. When doing so, the implementation of [`size_hint`] *must* /// return the exact size of the iterator. /// /// [`Iterator`]: trait.Iterator.html /// [`size_hint`]: trait.Iterator.html#method.size_hint /// /// The [`len`] method has a default implementation, so you usually shouldn't /// implement it. However, you may be able to provide a more performant /// implementation than the default, so overriding it in this case makes sense. /// /// [`len`]: #method.len /// /// # Examples /// /// Basic usage: /// /// ``` /// // a finite range knows exactly how many times it will iterate /// let five = 0..5; /// /// assert_eq!(5, five.len()); /// ``` /// /// In the [module level docs][moddocs], we implemented an [`Iterator`], /// `Counter`. Let's implement `ExactSizeIterator` for it as well: /// /// [moddocs]: index.html /// /// ``` /// # struct Counter { /// # count: usize, /// # } /// # impl Counter { /// # fn new() -> Counter { /// # Counter { count: 0 } /// # } /// # } /// # impl Iterator for Counter { /// # type Item = usize; /// # fn next(&mut self) -> Option<usize> { /// # self.count += 1; /// # if self.count < 6 { /// # Some(self.count) /// # } else { /// # None /// # } /// # } /// # } /// impl ExactSizeIterator for Counter { /// // We can easily calculate the remaining number of iterations. /// fn len(&self) -> usize { /// 5 - self.count /// } /// } /// /// // And now we can use it! /// /// let counter = Counter::new(); /// /// assert_eq!(5, counter.len()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub trait ExactSizeIterator: Iterator { /// Returns the exact number of times the iterator will iterate. /// /// This method has a default implementation, so you usually should not /// implement it directly. However, if you can provide a more efficient /// implementation, you can do so. See the [trait-level] docs for an /// example. /// /// This function has the same safety guarantees as the [`size_hint`] /// function. /// /// [trait-level]: trait.ExactSizeIterator.html /// [`size_hint`]: trait.Iterator.html#method.size_hint /// /// # Examples /// /// Basic usage: /// /// ``` /// // a finite range knows exactly how many times it will iterate /// let five = 0..5; /// /// assert_eq!(5, five.len()); /// ``` #[inline] #[stable(feature = "rust1", since = "1.0.0")] fn len(&self) -> usize { let (lower, upper) = self.size_hint(); // Note: This assertion is overly defensive, but it checks the invariant // guaranteed by the trait. If this trait were rust-internal, // we could use debug_assert!; assert_eq! will check all Rust user // implementations too. assert_eq!(upper, Some(lower)); lower } /// Returns whether the iterator is empty. /// /// This method has a default implementation using `self.len()`, so you /// don't need to implement it yourself. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(exact_size_is_empty)] /// /// let mut one_element = std::iter::once(0); /// assert!(!one_element.is_empty()); /// /// assert_eq!(one_element.next(), Some(0)); /// assert!(one_element.is_empty()); /// /// assert_eq!(one_element.next(), None); /// ``` #[inline] #[unstable(feature = "exact_size_is_empty", issue = "35428")] fn is_empty(&self) -> bool { self.len() == 0 } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for &'a mut I { fn len(&self) -> usize { (**self).len() } fn is_empty(&self) -> bool { (**self).is_empty() } } /// Trait to represent types that can be created by summing up an iterator. /// /// This trait is used to implement the [`sum`] method on iterators. Types which /// implement the trait can be generated by the [`sum`] method. Like /// [`FromIterator`] this trait should rarely be called directly and instead /// interacted with through [`Iterator::sum`]. /// /// [`sum`]: ../../std/iter/trait.Sum.html#tymethod.sum /// [`FromIterator`]: ../../std/iter/trait.FromIterator.html /// [`Iterator::sum`]: ../../std/iter/trait.Iterator.html#method.sum #[stable(feature = "iter_arith_traits", since = "1.12.0")] pub trait Sum<A = Self>: Sized { /// Method which takes an iterator and generates `Self` from the elements by /// "summing up" the items. #[stable(feature = "iter_arith_traits", since = "1.12.0")] fn sum<I: Iterator<Item=A>>(iter: I) -> Self; } /// Trait to represent types that can be created by multiplying elements of an /// iterator. /// /// This trait is used to implement the [`product`] method on iterators. Types /// which implement the trait can be generated by the [`product`] method. Like /// [`FromIterator`] this trait should rarely be called directly and instead /// interacted with through [`Iterator::product`]. /// /// [`product`]: ../../std/iter/trait.Product.html#tymethod.product /// [`FromIterator`]: ../../std/iter/trait.FromIterator.html /// [`Iterator::product`]: ../../std/iter/trait.Iterator.html#method.product #[stable(feature = "iter_arith_traits", since = "1.12.0")] pub trait Product<A = Self>: Sized { /// Method which takes an iterator and generates `Self` from the elements by /// multiplying the items. #[stable(feature = "iter_arith_traits", since = "1.12.0")] fn product<I: Iterator<Item=A>>(iter: I) -> Self; } // NB: explicitly use Add and Mul here to inherit overflow checks macro_rules! integer_sum_product { (@impls $zero:expr, $one:expr, #[$attr:meta], $($a:ty)*) => ($( #[$attr] impl Sum for $a { fn sum<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold($zero, Add::add) } } #[$attr] impl Product for $a { fn product<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold($one, Mul::mul) } } #[$attr] impl<'a> Sum<&'a $a> for $a { fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold($zero, Add::add) } } #[$attr] impl<'a> Product<&'a $a> for $a { fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold($one, Mul::mul) } } )*); ($($a:ty)*) => ( integer_sum_product!(@impls 0, 1, #[stable(feature = "iter_arith_traits", since = "1.12.0")], $($a)+); integer_sum_product!(@impls Wrapping(0), Wrapping(1), #[stable(feature = "wrapping_iter_arith", since = "1.14.0")], $(Wrapping<$a>)+); ); } macro_rules! float_sum_product { ($($a:ident)*) => ($( #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl Sum for $a { fn sum<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold(0.0, |a, b| a + b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl Product for $a { fn product<I: Iterator<Item=$a>>(iter: I) -> $a { iter.fold(1.0, |a, b| a * b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl<'a> Sum<&'a $a> for $a { fn sum<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold(0.0, |a, b| a + *b) } } #[stable(feature = "iter_arith_traits", since = "1.12.0")] impl<'a> Product<&'a $a> for $a { fn product<I: Iterator<Item=&'a $a>>(iter: I) -> $a { iter.fold(1.0, |a, b| a * *b) } } )*) } integer_sum_product! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize } float_sum_product! { f32 f64 } /// An iterator adapter that produces output as long as the underlying /// iterator produces `Result::Ok` values. /// /// If an error is encountered, the iterator stops and the error is /// stored. The error may be recovered later via `reconstruct`. struct ResultShunt<I, E> { iter: I, error: Option<E>, } impl<I, T, E> ResultShunt<I, E> where I: Iterator<Item = Result<T, E>> { /// Process the given iterator as if it yielded a `T` instead of a /// `Result<T, _>`. Any errors will stop the inner iterator and /// the overall result will be an error. pub fn process<F, U>(iter: I, mut f: F) -> Result<U, E> where F: FnMut(&mut Self) -> U { let mut shunt = ResultShunt::new(iter); let value = f(shunt.by_ref()); shunt.reconstruct(value) } fn new(iter: I) -> Self { ResultShunt { iter, error: None, } } /// Consume the adapter and rebuild a `Result` value. This should /// *always* be called, otherwise any potential error would be /// lost. fn reconstruct<U>(self, val: U) -> Result<U, E> { match self.error { None => Ok(val), Some(e) => Err(e), } } } impl<I, T, E> Iterator for ResultShunt<I, E> where I: Iterator<Item = Result<T, E>> { type Item = T; fn next(&mut self) -> Option<Self::Item> { match self.iter.next() { Some(Ok(v)) => Some(v), Some(Err(e)) => { self.error = Some(e); None } None => None, } } fn size_hint(&self) -> (usize, Option<usize>) { if self.error.is_some() { (0, Some(0)) } else { let (_, upper) = self.iter.size_hint(); (0, upper) } } } #[stable(feature = "iter_arith_traits_result", since="1.16.0")] impl<T, U, E> Sum<Result<U, E>> for Result<T, E> where T: Sum<U>, { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, /// the sum of all elements is returned. /// /// # Examples /// /// This sums up every integer in a vector, rejecting the sum if a negative /// element is encountered: /// /// ``` /// let v = vec![1, 2]; /// let res: Result<i32, &'static str> = v.iter().map(|&x: &i32| /// if x < 0 { Err("Negative element found") } /// else { Ok(x) } /// ).sum(); /// assert_eq!(res, Ok(3)); /// ``` fn sum<I>(iter: I) -> Result<T, E> where I: Iterator<Item = Result<U, E>>, { ResultShunt::process(iter, |i| i.sum()) } } #[stable(feature = "iter_arith_traits_result", since="1.16.0")] impl<T, U, E> Product<Result<U, E>> for Result<T, E> where T: Product<U>, { /// Takes each element in the `Iterator`: if it is an `Err`, no further /// elements are taken, and the `Err` is returned. Should no `Err` occur, /// the product of all elements is returned. fn product<I>(iter: I) -> Result<T, E> where I: Iterator<Item = Result<U, E>>, { ResultShunt::process(iter, |i| i.product()) } } /// An iterator that always continues to yield `None` when exhausted. /// /// Calling next on a fused iterator that has returned `None` once is guaranteed /// to return [`None`] again. This trait should be implemented by all iterators /// that behave this way because it allows for some significant optimizations. /// /// Note: In general, you should not use `FusedIterator` in generic bounds if /// you need a fused iterator. Instead, you should just call [`Iterator::fuse`] /// on the iterator. If the iterator is already fused, the additional [`Fuse`] /// wrapper will be a no-op with no performance penalty. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`Iterator::fuse`]: ../../std/iter/trait.Iterator.html#method.fuse /// [`Fuse`]: ../../std/iter/struct.Fuse.html #[stable(feature = "fused", since = "1.26.0")] pub trait FusedIterator: Iterator {} #[stable(feature = "fused", since = "1.26.0")] impl<'a, I: FusedIterator + ?Sized> FusedIterator for &'a mut I {} /// An iterator that reports an accurate length using size_hint. /// /// The iterator reports a size hint where it is either exact /// (lower bound is equal to upper bound), or the upper bound is [`None`]. /// The upper bound must only be [`None`] if the actual iterator length is /// larger than [`usize::MAX`]. In that case, the lower bound must be /// [`usize::MAX`], resulting in a [`.size_hint`] of `(usize::MAX, None)`. /// /// The iterator must produce exactly the number of elements it reported /// or diverge before reaching the end. /// /// # Safety /// /// This trait must only be implemented when the contract is upheld. /// Consumers of this trait must inspect [`.size_hint`]’s upper bound. /// /// [`None`]: ../../std/option/enum.Option.html#variant.None /// [`usize::MAX`]: ../../std/usize/constant.MAX.html /// [`.size_hint`]: ../../std/iter/trait.Iterator.html#method.size_hint #[unstable(feature = "trusted_len", issue = "37572")] pub unsafe trait TrustedLen : Iterator {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl<'a, I: TrustedLen + ?Sized> TrustedLen for &'a mut I {}