1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! Integer and floating-point number formatting

#![allow(deprecated)]


use fmt;
use ops::{Div, Rem, Sub};
use str;
use slice;
use ptr;
use mem;

#[doc(hidden)]
trait Int: PartialEq + PartialOrd + Div<Output=Self> + Rem<Output=Self> +
           Sub<Output=Self> + Copy {
    fn zero() -> Self;
    fn from_u8(u: u8) -> Self;
    fn to_u8(&self) -> u8;
    fn to_u16(&self) -> u16;
    fn to_u32(&self) -> u32;
    fn to_u64(&self) -> u64;
    fn to_u128(&self) -> u128;
}

macro_rules! doit {
    ($($t:ident)*) => ($(impl Int for $t {
        fn zero() -> $t { 0 }
        fn from_u8(u: u8) -> $t { u as $t }
        fn to_u8(&self) -> u8 { *self as u8 }
        fn to_u16(&self) -> u16 { *self as u16 }
        fn to_u32(&self) -> u32 { *self as u32 }
        fn to_u64(&self) -> u64 { *self as u64 }
        fn to_u128(&self) -> u128 { *self as u128 }
    })*)
}
doit! { i8 i16 i32 i64 i128 isize u8 u16 u32 u64 u128 usize }

/// A type that represents a specific radix
#[doc(hidden)]
trait GenericRadix {
    /// The number of digits.
    const BASE: u8;

    /// A radix-specific prefix string.
    const PREFIX: &'static str;

    /// Converts an integer to corresponding radix digit.
    fn digit(x: u8) -> u8;

    /// Format an integer using the radix using a formatter.
    fn fmt_int<T: Int>(&self, mut x: T, f: &mut fmt::Formatter) -> fmt::Result {
        // The radix can be as low as 2, so we need a buffer of at least 128
        // characters for a base 2 number.
        let zero = T::zero();
        let is_nonnegative = x >= zero;
        let mut buf: [u8; 128] = unsafe { mem::uninitialized() };
        let mut curr = buf.len();
        let base = T::from_u8(Self::BASE);
        if is_nonnegative {
            // Accumulate each digit of the number from the least significant
            // to the most significant figure.
            for byte in buf.iter_mut().rev() {
                let n = x % base;               // Get the current place value.
                x = x / base;                   // Deaccumulate the number.
                *byte = Self::digit(n.to_u8()); // Store the digit in the buffer.
                curr -= 1;
                if x == zero {
                    // No more digits left to accumulate.
                    break
                };
            }
        } else {
            // Do the same as above, but accounting for two's complement.
            for byte in buf.iter_mut().rev() {
                let n = zero - (x % base);      // Get the current place value.
                x = x / base;                   // Deaccumulate the number.
                *byte = Self::digit(n.to_u8()); // Store the digit in the buffer.
                curr -= 1;
                if x == zero {
                    // No more digits left to accumulate.
                    break
                };
            }
        }
        let buf = unsafe { str::from_utf8_unchecked(&buf[curr..]) };
        f.pad_integral(is_nonnegative, Self::PREFIX, buf)
    }
}

/// A binary (base 2) radix
#[derive(Clone, PartialEq)]
struct Binary;

/// An octal (base 8) radix
#[derive(Clone, PartialEq)]
struct Octal;

/// A hexadecimal (base 16) radix, formatted with lower-case characters
#[derive(Clone, PartialEq)]
struct LowerHex;

/// A hexadecimal (base 16) radix, formatted with upper-case characters
#[derive(Clone, PartialEq)]
struct UpperHex;

macro_rules! radix {
    ($T:ident, $base:expr, $prefix:expr, $($x:pat => $conv:expr),+) => {
        impl GenericRadix for $T {
            const BASE: u8 = $base;
            const PREFIX: &'static str = $prefix;
            fn digit(x: u8) -> u8 {
                match x {
                    $($x => $conv,)+
                    x => panic!("number not in the range 0..{}: {}", Self::BASE - 1, x),
                }
            }
        }
    }
}

radix! { Binary,    2, "0b", x @  0 ...  1 => b'0' + x }
radix! { Octal,     8, "0o", x @  0 ...  7 => b'0' + x }
radix! { LowerHex, 16, "0x", x @  0 ...  9 => b'0' + x,
                             x @ 10 ... 15 => b'a' + (x - 10) }
radix! { UpperHex, 16, "0x", x @  0 ...  9 => b'0' + x,
                             x @ 10 ... 15 => b'A' + (x - 10) }

macro_rules! int_base {
    ($Trait:ident for $T:ident as $U:ident -> $Radix:ident) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::$Trait for $T {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                $Radix.fmt_int(*self as $U, f)
            }
        }
    }
}

macro_rules! debug {
    ($T:ident) => {
        #[stable(feature = "rust1", since = "1.0.0")]
        impl fmt::Debug for $T {
            #[inline]
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                if f.debug_lower_hex() {
                    fmt::LowerHex::fmt(self, f)
                } else if f.debug_upper_hex() {
                    fmt::UpperHex::fmt(self, f)
                } else {
                    fmt::Display::fmt(self, f)
                }
            }
        }
    }
}

macro_rules! integer {
    ($Int:ident, $Uint:ident) => {
        int_base! { Binary   for $Int as $Uint  -> Binary }
        int_base! { Octal    for $Int as $Uint  -> Octal }
        int_base! { LowerHex for $Int as $Uint  -> LowerHex }
        int_base! { UpperHex for $Int as $Uint  -> UpperHex }
        debug! { $Int }

        int_base! { Binary   for $Uint as $Uint -> Binary }
        int_base! { Octal    for $Uint as $Uint -> Octal }
        int_base! { LowerHex for $Uint as $Uint -> LowerHex }
        int_base! { UpperHex for $Uint as $Uint -> UpperHex }
        debug! { $Uint }
    }
}
integer! { isize, usize }
integer! { i8, u8 }
integer! { i16, u16 }
integer! { i32, u32 }
integer! { i64, u64 }
integer! { i128, u128 }

const DEC_DIGITS_LUT: &'static[u8] =
    b"0001020304050607080910111213141516171819\
      2021222324252627282930313233343536373839\
      4041424344454647484950515253545556575859\
      6061626364656667686970717273747576777879\
      8081828384858687888990919293949596979899";

macro_rules! impl_Display {
    ($($t:ident),*: $conv_fn:ident) => ($(
    #[stable(feature = "rust1", since = "1.0.0")]
    impl fmt::Display for $t {
        #[allow(unused_comparisons)]
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            let is_nonnegative = *self >= 0;
            let mut n = if is_nonnegative {
                self.$conv_fn()
            } else {
                // convert the negative num to positive by summing 1 to it's 2 complement
                (!self.$conv_fn()).wrapping_add(1)
            };
            let mut buf: [u8; 39] = unsafe { mem::uninitialized() };
            let mut curr = buf.len() as isize;
            let buf_ptr = buf.as_mut_ptr();
            let lut_ptr = DEC_DIGITS_LUT.as_ptr();

            unsafe {
                // need at least 16 bits for the 4-characters-at-a-time to work.
                if ::mem::size_of::<$t>() >= 2 {
                    // eagerly decode 4 characters at a time
                    while n >= 10000 {
                        let rem = (n % 10000) as isize;
                        n /= 10000;

                        let d1 = (rem / 100) << 1;
                        let d2 = (rem % 100) << 1;
                        curr -= 4;
                        ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
                        ptr::copy_nonoverlapping(lut_ptr.offset(d2), buf_ptr.offset(curr + 2), 2);
                    }
                }

                // if we reach here numbers are <= 9999, so at most 4 chars long
                let mut n = n as isize; // possibly reduce 64bit math

                // decode 2 more chars, if > 2 chars
                if n >= 100 {
                    let d1 = (n % 100) << 1;
                    n /= 100;
                    curr -= 2;
                    ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
                }

                // decode last 1 or 2 chars
                if n < 10 {
                    curr -= 1;
                    *buf_ptr.offset(curr) = (n as u8) + b'0';
                } else {
                    let d1 = n << 1;
                    curr -= 2;
                    ptr::copy_nonoverlapping(lut_ptr.offset(d1), buf_ptr.offset(curr), 2);
                }
            }

            let buf_slice = unsafe {
                str::from_utf8_unchecked(
                    slice::from_raw_parts(buf_ptr.offset(curr), buf.len() - curr as usize))
            };
            f.pad_integral(is_nonnegative, "", buf_slice)
        }
    })*);
}

impl_Display!(i8, u8, i16, u16, i32, u32: to_u32);
impl_Display!(i64, u64: to_u64);
impl_Display!(i128, u128: to_u128);
#[cfg(target_pointer_width = "16")]
impl_Display!(isize, usize: to_u16);
#[cfg(target_pointer_width = "32")]
impl_Display!(isize, usize: to_u32);
#[cfg(target_pointer_width = "64")]
impl_Display!(isize, usize: to_u64);